

Oxide documentation

Oxide is a tiling window manager for X11. It is written in Rust and uses X11rb.
This project idea is inspired by DWM, leftWM and i3WM.

[image: _images/oxide-rice.png]

Oxide screenshot

A short overview about the topics on this page:

The site “Introducing Oxide” contains basic knowledge for getting in touch with Oxide.

Furthermore the category “Project procedure” contains every relevant documents and informations about the development process, e.g. specifications or critical technologies and their justifications.

The section “Diagrams” is for the different diagrams from component and hmi behavior over UML-diagrams to automatically generated class-diagrams.

Last but not least there is “Using Oxide”, which describes the process of installation as well as the different configuration options, containing the man pages among other things, too.

Contents

	Home

	Introducing Oxide
	Introduction

	Terminology

	Target group

	Product functions

	Config file

	Logging

	Files

	Bugs

	Project procedure
	Customer specification (Lastenheft)

	Technical specification (Pflichtenheft)

	Project handbook

	Work package plan

	Technologies

	Testing Oxide

	Diagrams
	Components and behavior diagrams

	HMI behavior

	Flowcharts

	Class diagrams

	Using Oxide
	Installation

	Configuration

	Configuration of statusbar

	Configuration of Oxide msg

Footnotes

Introducing Oxide

Introduction

Oxide is a dynamic tiling windowmanager for X11.

Windows are automatically arranged in a grid-like fashion. The user can then move and resize windows by using keyboard shortcuts. Custom defining of those shortcuts to launch applications is also possible.

Oxide tries to maximize the screensize by removing unnecessary borders and decorations as well as to be as keyboard friendly as possible. Everything can be done via the keyboard.

Oxide is done via a configuration file. The configuration file is written in YAML and can be reloaded at runtime. This makes the user able to change the behavior of Oxide without having to restart it.

Terminology

Window

An X11 application window such as a browser or terminal.

Workspace

A workspace contains multiple windows. The user can switch between several workspaces.

Layout

Layouts are different algorithms placing windows.

Target group

The target group contains power users with advanced Linux knowledge.

Product functions

The Oxide window manager gives the user the ability to start and quit applications through its interface. The software itself is supposed to support dynamic tiling, allowing the user to arrange multiple applications in a grid-like arrangement optimizing screen space utilization. Along with this it supports both floating and static applications, giving the user flexibility in his window management.

Therefore applications are expected to be moved around the screen by the user to different tiled positions or to float as a separate window.

Keyboard inputs are handled effectively, allowing the user to control all aspects of the applications by using keyboard shortcuts. The software supports focusing on different windows, making the user able to switch between applications.

Oxide supports multiple workspaces as well as multiple monitors, allowing the user to create and switch between different virtual desktops and to extend their workspace across multiple screens. It also provides an interface for configuring various settings and options, such as the number of workspaces, monitor arrangement, and more.

Allowing the user to specify which applications should start automatically when the software is launched is another feature.

The window manager integrates a taskbar providing an intuitive and streamlined way to switch between open applications and workspaces. For this it is necessary to support popular utilities like Drun or Rofi.

Inter process communication (IPC) is used for interacting between different applications and services, allowing for a seamless integration with the users workflow. The window manager uses a config file in which the user can manage his preferences and settings. Also power management features are included, such as screen locking after a specified timeout to help conserve energy and improve security. For improving the overall user experience the software includes visually appealing animations.

Config file

Oxide can be configured via its config file. This includes keybindings, appearance and more. Before editing, the global config file located under

/etc/oxide/config.yml

should be copied into the users home directory under

~/.config/oxide/config.yml

For a more detailed description of the config see configuration of Oxide.

Logging

Oxide log messages are written to

/var/log/syslog

Files

Per-user config file:

~/.config/oxide/config.yml

Global config file:

/etc/oxide/config.yml

Oxide desktop file:

/usr/share/xsessions/oxide.desktop

Bugs

Please open an issue on https://github.com/DHBW-FN/OxideWM/issues .

Footnotes

Project procedure

	Customer specification (Lastenheft)

	Technical specification (Pflichtenheft)

	Project handbook

	Work package plan

	Technologies

	Testing Oxide

Footnotes

Customer specification (Lastenheft)

Product goal

Getting to know how window managers and Xorg work.
Development of a working window manager.

Target group

Target group contains power users with advanced Linux knowledge.

Product functions

Fundamental

The Oxide window manager should give the user the ability to start and quit applications through its interface. The software itself is supposed to support dynamic tiling, allowing the user to arrange multiple applications in a grid-like arrangement optimizing screen space utilization. Along with this it should support both floating and static applications, giving the user flexibility in his window management.

Therefore applications are expected to be moved around the screen by the user to different tiled positions or to float as a separate window.

Keyboard inputs are to be handled effectively, allowing the user to control all aspects of the applications by using keyboard shortcuts. The software should support focusing on different windows, allowing the user to switch between applications.

Basic

The software should support multiple workspaces as well as multiple monitors, allowing the user to create and switch between different virtual desktops and to extend their workspace across multiple screens. It is also supposed to provide an interface for configuring various settings and options, such as the number of workspaces, monitor arrangement, and more.

Autostarting of applications is supposed to be another feature, allowing the user to specify which applications should start automatically when the software is launched.

The window manager should integrate a taskbar providing an intuitive and streamlined way to switch between open applications and workspaces. For this it is necessary to support popular utilities like Drun or Rofi.

Desired

Inter process communication (IPC) should be used for interacting between different applications and services, allowing for a seamless integration with the users workflow.

The window manager is supposed to use a config file in which the user can manage his preferences and settings. Also power management features should be included, such as screen locking after a specified timeout to help conserve energy and improve security.

For improving the overall user experience the software is to include visually appealing animations.

Documentation

Keeping track of tickets with timestamps.

Footnotes

Technical specification (Pflichtenheft)

Product functions

1. Fundamental

1.1 starting and quitting apps

The Oxide window manager should give the user the ability to start and quit applications through its interface.

1.2 tiling functionality

The software itself must support dynamic tiling, allowing the user to arrange applications in a grid-like arrangement optimizing screen space utilization.
Along with this it shouis supposed to support both floating and static applications, giving the user flexibility in his window management.

1.3 moving windows

Therefore applications are expected to be moved around the screen by the user to different tiled positions or to float as a separate window.

1.4 controllable via keyboard

The user must be able to control all aspects of the applications by using keyboard shortcuts.

1.5 controllable via IPC

The user must be able to control all aspects of the applications by using the IPC interface.

1.6 focusing windows

The software must support focusing on different windows, allowing the user to switch between applications.

1.7 key-forwarding

When a window is stated to be focused the keybord inputs must be directed to the focused application.

2. Basic

2.1 multiple workspaces

The software must support at least ten workspaces, allowing the user to create, quit and switch between different virtual desktops.

2.1.1 move window to workspace

The software must support moving a window to another workspace. When this functionality is executed, the windowmanager must:
- remove the window from the old workspace
- add the window to the new workspace

2.1.2 switching between workspaces

When this functionality of the window manager is executed, the window manager must:
- display all windows that were opened or moved to this screen (if fullscreen is not active).

2.1.3 closing workspaces

When this functionality of the window manager is executed, the window manager must:
- close all windows that are currently in this workspace
- switch to another open one, so that the user is never on “no” workspace
When the last workspace is closed, a new workspace must be created. The windowmanager must then switch to the newly created workspace.

2.2 config

The window manager must provide an interface for configuring various settings and options.
This configuration must be human readable or must provide another interface so that an linux averse person can change the settings.
There must be default values for the configuration elements, so that when a users configuration is incorrect, the windowmanager still starts.
Furthermore, the configuration must be applied to the windowmanager, every time it is started.

2.2.1 keybindings

For every command, that the window manager provides, the user must be able to configure a keybinding specified as below.
A keybinding must contain exactly one none modifier key such as 1, 2, A, B, …
It can contain any combination of the following modifiers: Alt, Meta, Command, Shift.
To enhance the configurability, the user must be able to assign multiple commands to a single keybinding.

2.2.2 autostart

Autostarting of applications must be supported, allowing the user to specify which applications should start automatically.

2.3 utilities

The window manager should integrate a taskbar providing astreamlined way to switch between open applications and workspaces.
For this it is necessary to support popular utilities like Drun or Rofi.

3. Desired

3.1 multiple screens

The windowmanager must empower the user to use multiple screens connected to his computer.

3.1.1 multiple screens workspaces

To take full advantage of the multiple screens, the windowmanager must allow workspaces on every stream.

3.1.1 multiple screens moving windows

The windowmanager must provide a way, to move windows between workspaces across screens.

3.2 screen locking

Also power management features should be included, such as screen locking after a specified timeout to help conserve energy and improve security.

3.3 statusbar

The windowmanager should provide a statusbar of some sort, to keep track of which workspaces exist, and on which workspace the user currently operates.

4. Documentation

Keeping track of tickets with timestamps.

5. Data relevant for the user

The application will be running locally so it needs to be downloaded and installed by the user before using it for the first time.
Files needed for configuration will be stored locally.

6. Product performance - requirements

Claim is having no delay between key inputs and the following action.
If possible, visible tasks should be performed in under a 24th of a second. This is not possible for opening application windows.

7. Quality requirements

Randomly crashing must not happen. If configurations are invalid they should be overwritten by default values.
The config file should be formatted as JSON.

8. User Interface

Controlling the window manager will only be possible by using the keyboard.
A mouse can be used to focus on individal frames and interact with application interfaces like webbrowsers.

9. Non-functional requirements

An installer with package manager cargo is required.

10. Project enviroment

10.1. Software

The product is supposed to be used on Unix based operating systems with an X11 instance running.
Furthermore there is no other running window manager accepted.

10.2. Hardware

Required hardware is at least one monitor as well as a keyboard working with the operating system.
There are no hardware limitations.

10.3 Organizational framework

Since the code is licensed with GPL v3 there are no conflicts with GPL licensed libraries.

10.4 Product interface

The behavior of the window manager can be customized by changing the config files.
Program actions will be stored in log files located under TODO .

11. Special requirements

11.1 Software

	x11rb[#1]

	buildin crate log for logging

	Zbus for IPC

	Serde for parsing

11.2 Development interfaces

	X11 API

	D-Bus

Footnotes

[#1]
https://github.com/psychon/x11rb

Project handbook

General project schedule

Researching technologies

All research results and discussions will be stored in the concepts
folder. All documents will be written in markdown - there are no other
formal restrictions.

Ticketing

Every task will be documented with a Git issue. The current status will
be kept updated for the following states:

	TODO

	in progress

	open for review

	done

Branching

Every issue will get its own branch. A feature branch will be named
after the following guideline:

feature/ISSUE<ISSUENUMBER>-<Featurename>

A bugfix branch will be named after the following guideline:

bug/ISSUE<ISSUENUMBER>-<Featurename>

The feature branches can freely be branched for testing purposes. These
sub-branches can be merged back into to top-branch without any pull
requests.

Crossbranching between feature branches is prohibited.

Every merge into the main branch has to be accepted and reviewed
through a pull request. There should not be any rebase onto main.
Working methods on the feature branches are open to developer.

Testing

All test logs are to be stored in the subdirectory test_logs. Those
will not be published on GitHub. Upcoming issues should be documented
with Git issues with the following format:

Titel: error-code

error description

\```
stackstrace
\```

Unittest

Logs from unittests are to be stored in test_logs/unittests. At the
end of the project all logs should be pushed to GitHub with one commit.
Unittests can be documented with their source code. The output has to be
logged and saved.

Manual tests

Manual tests are stored in test_logs/manual. At the end the logs
should be commited like the unittest logs. These logs are formatted like
the following:

Testname_Testdate

Content

... What was tested? ...

Test results

... Which errors occured, which functions worked? ...

Logging

Logging should work with the following levels:

	info

	trace

	warn

Scrum

Sprint duration: 1 week Sprint-Meeting: weekly while the lecture

Footnotes

Work package plan

	Title

	Duration [weeks]

	Planning

	3

	Project setup

	2

	Concepts

	3

	Fundamental features

	6

	Basic features

	5

	Testing

	6

	Desired features

	3

	Feature freeze / bug fixing

	2

	Presentation planning

	2

Hint

If the work package plan is not shown big enough to read, please click on it.

[image: ../_images/workpackageplan.png]

work package plan

Footnotes

Technologies

	Critical technologies
	Rust as implementation language

	Inter Process Communication (IPC)

	Reactiveness

	XCB

	Window manager configuration

	Programming paradigms

	Programming languages

	Development Environment

	Hardware

	D-Bus interprocess communication (IPC)
	D-Bus interface description

Footnotes

Critical technologies

	Rust as implementation language

	Inter Process Communication (IPC)

	Reactiveness

	XCB

	Window manager configuration

Programming paradigms

	Client-Server model

	event driven, functional, imperative, procedural, structured programming

Programming languages

	Rust

	bash/shell

	Make

Development Environment

	Posix

	Xorg

	Xephyr

	CLion / Vim / Visual Studio Code

Hardware

	Personal Computer

Footnotes

Rust as implementation language

This document outlines why rust has been chosen as the language of
implementation for this project. But it needs to be mentioned that this
choice was not purely made out of technical reasoning, because we think
rust is fun and we enjoy to learn this language.

Technical arguments for Rust

Rust is a good choice for a system level language as it allows direct
memory acces but also object orientation and offers a memory safe
environment. Further this is achieved without a resource intensive
garbage collection and high speeds in the realm of C are possible. Even
though rust is still “relatively” new, it already has a stable ecosystem
and a lot of libraries supporting it.

A first search for rust libraries allowing connections to the X-Server
shows multiple results. The same is true for dbus- and IPC-libraries.

Therefore Rust seems to be a good choice for our project.

Footnotes

Inter Process Communication (IPC)

During a first discussion it was decided that Oxide should be
controllable via an IPC mechanism. This functionality will be inspired
by i3-msg.

Description

An IPC mechanism for the window manager is required. This is neccessary
for:

	Taskbar

	External libraries

	Command line utility

Feature list

The following list includes currently proposed features

	everything that is achievable via the keyboard (kill, move, launch…)

	current state of the window manager including e.g. layout or windows

IPC integration solution

Since there are two types of events that have to be handled, there needs
to be some separation between them.

One type are xevents, received from the X11 instance, and the
other one is custom events created by the user, received over zbus.

For this reason, each type of event will get its own loop on its own
thread, which will await them and push them into a list shared between
them. The events in this list will be taken care of by the window
manager, who will execute the correct action based on event type and
content.

[image: ../../_images/ipc_queue.png]

IPC queue

Technical solution

The following sections describe the argument for the different
IPC-mechanisms and libraries.

Requirements

As for the aforementioned use cases it will not be required to send
large amounts of data. Only short messages will be exchanged between the
clients. Also it is not expected that the IPC performance will have a
significant impact on the usability of the system. Therefore some IPC
options such as shared memory and semaphores will not be regarded as
these options are not as easy to use and do not offer any significant
advantages.

Possible IPC mechanisms

There are multiple different ways of implementing IPC on posix systems.

FIFO

Named Pipes Wikipedia[#1]

	work like normal pipes, but are a permanent file on the system

	fasted regarded option

	good library support

Unix Sockets

Unix Domain Sockets
Wikipedia[#2]

	work like TCP sockets

	very fast IPC mechanism

	easy to use and inbuilt library support

D-Bus

D-Bus Wikipedia[#3]

D-Bus documentation Rust[#4]

D-Bus create from freedesktop.org[#5]

D-Bus interface for Rust[#6]

	high level IPC mechanism

	based on unix sockets

	widely used in projects such as Gnome and KDE

	offers message queuing, tow way communication and is supposed to offer a easy to use interface

	comparetively slow compared to FIFO or UNIX sockets

Key Takeaways

Discussion about IPC on Stackoverflow[#7]

Stackoverflow Comparison D-Bus vs Unix Sockets[#8]

Practical uses of D-Bus[#9]

	TCP Sockets are only about 16% slower compared to FIFO

	IPC performance is in most cases not the bottleneck

	Sockets allow for two way communication

	Sockets are more widely supported

	IPC interface should be abstracted, so that the IPC mechanism can be
changed in a later stage

	D-Bus should offer a high level, simple to use IPC mechanism

Conclusion

After a technical discussion with the team the conclusion came to
that D-Bus is most suitable. The performance is deemed non
critical in our use case and the ease of use will be benefitial for
the project. None the less, the IPC interface should be created in an
abstract manner allowing for a possible replacement of the underlying
IPC mechanism.

Implementation

Available libraries

There seem to be two main projects striving to provide D-Bus support for
rust.

Zbus project repository[#10]

Zbus crate[#11]

Zbus documentation[#12]

	official D-Bus rust implementation by the freedesktop.org foundation

	pure rust implementation

	extensive documentation

	examples

dbus-rs repository[#13]

dbus crate[#14]

	wrapper library for libdbus -> libdbus dependency - examples

Conclusion

Zbus seems to have some advantages over D-Bus-rs, mainly: - official
freedesktop.org library - pure rust -> no libdbus dependency -
Extensive documentation - Due to being an official library, maintenance
is most likely certain

Therefore we came to the conclusion to use zbus as our IPC library.

Conclusion

As IPC-mechanism dbus was chosen as most suitable. The rust library
zbus has been chosen as implementation.

Footnotes

[#1]
https://en.wikipedia.org/wiki/Named_pipe

[#2]
https://de.wikipedia.org/wiki/Unix_Domain_Socket

[#3]
https://en.wikipedia.org/wiki/D-Bus

[#4]
https://docs.rs/dbus/latest/dbus/

[#5]
https://dbus.pages.freedesktop.org/zbus/

[#6]
https://github.com/diwic/dbus-rs

[#7]
https://stackoverflow.com/questions/1235958/ipc-performance-named-pipe-vs-socket

[#8]
https://stackoverflow.com/questions/33887063/difference-between-dbus-and-other-interprocess-communications-method

[#9]
https://unix.stackexchange.com/questions/604258/what-is-d-bus-practically-useful-for

[#10]
https://gitlab.freedesktop.org/dbus/zbus/-/tree/main

[#11]
https://crates.io/crates/zbus

[#12]
https://dbus.pages.freedesktop.org/zbus/

[#13]
https://github.com/diwic/dbus-rs

[#14]
https://crates.io/crates/dbus

Reactiveness

The window manager should at all stages be reactive and only use a
minimal amount of resources. In order to assure this polling of threads
should never be implemented.

Event Sources

Events for the window manager can be created by multiple sources.

	X-Events Generated by the X-Server and regarding userinput,
clients requests and more.

	IPC-Events Generated via the IPC-mechanism by the user or
programs running on the system.

In order to be able to handle these two event sources two possible
solutions are available:

	Polling of both event-sources

poll for X-Event

poll for IPC-event

execute received event

This layout allows for a very simple single threaded implementation of
the window manager but requires a frequent polling loop in order to
allow for a reactive behavior.

Therefore this layout is not suitable for our requirements as this would
be very inefficient.

	Multithreaded queues

[image: ../../_images/ipc_queue.png]

IPC-queue

This layout requires three different queues. 1. X-Event queue -> waits
until an x-event is received 2. IPC-Event queue -> waits until an
IPC-event is reveived 3. mainloop -> waits for an event forwarded to the
mainevent-queue by the above mentioned threads

If implemented in the above shown way, no polling is required. This
therefore allows to sleep the threads until an event is received and the
kernel wakes up the thread. It therefore will be very reactive and use
only minimal resources.

=> Therefore we will implement this layout.

Technical solution

Waiting for event

The following documents functions of the chosen libraries that support
waiting for an event:

	X-Event The x11rb library supports waiting on an event:
wait_for_event
method[#1]

	IPC-Event Zbus is asynchronous in nature. The handling functions are
registered to the server and executed when an event is received.
Zbus Example[#2]

	mainloop as shared queue the channel implementation of the rust
standard library was chosen. This allows to wait for an event: recv
method[#3]

Footnotes

[#1]
https://smithay.github.io/smithay/x11rb/connection/trait.Connection.html#method.wait_for_event

[#2]
https://docs.rs/zbus/latest/zbus/

[#3]
https://doc.rust-lang.org/std/sync/mpsc/struct.Receiver.html#method.recv

XCB

This document covers some basics of XCB. This contains strengths and
weaknesses and other aspects worth mentioning when trying to decide
between it and Xlib.

All information was pulled from the XCB
tutorial[#1].

What is XCB

It is a alternative to the X-server interface Xlib. Both offer the
ability to communicate with a systems x-server, which is a crucially
important aspect of a window manager.

XCB eliminates the need for programs to implement the X protocol layer
by offering low-level access to X-servers. Since the protocol is
standardized, it is possible to talk to any X-server with XCB.

What does XCB provide over Xlib

	Toolkit implementation

	Direct protocol programming (see section Why not to use XCB)

	Leightweight emulation of commonly used portions of the Xlib API

	XCB does not lock itself while waiting for a response it send to a
x-server instance like Xlib. This avoids needless stalling while a
request is processed. Instead, XCB binds a cookie to a request which
can then be used to ask for a pointer to the corresponding reply.
This not only enables reading of the reply only when it is required,
but also is ~5 times faster then locking while waiting for a reply.

Latency comparison

	Request: W

	Reply: R

	No action: -

	Amount of send requests: N

Xlib

Due to how Xlib works, a request-reply cycle works like this:

W-----RW-----RW-----RW-----R

The total time is N * (T_write + T_round_trip + T_read).

XCB

XCBs request-reply cycle looks like this:

WWWW--RRRR

The total time is
N * T_write + max(0, T_round_trip - (N-1) * T_write) + N * T_read.

Conclusion

XCB offers considerably faster event handling. The tutorial linked at the
top of this document also proiveds the source code and results of a
benchmarking which leads to the same results.

Why to not use Xlib

Xlib is quite big: Xlib is bigger then XCB and can therefore not be
used with minimalistic systems. However, the target groups of this
project are (semi-)well equiped computers, which makes this not as much
of an advantage.

Latency: Xlib manages events synchronously, with the principle of
first in, first out (fifo). This can cause delays when dealing with a
bigger amount of events within a short notice.

Multithreading: XCB appears to support this feature. Xlib can to
some degree work with multiple threads too but its API was not designed
for this purpose which makes it difficult to work with as well as
error-prone.

Why not to use XCB

Direct protocol access: This can be good or not depending on the
system an application will run on. Xlib performs chaching, layering and
other optimizations by itself. XCB does not provide this feature.

Summary

XCB seems to be a lighter version of Xlib that also solves issues like
multithreading while losing some optimizations such as caching in the
process. However, XCB offers a considerably quicker request-reply
method, which also allows reading of replies when necessary and does not
force an aplication to do so when the response becomes available.

Footnotes

[#1]
https://xcb.freedesktop.org/tutorial/

Window manager configuration

At the beginning of the project, it was decided to have an external
config file which can be personalised freely. For this to happen a
suitable file format had to be chosen.

File format

Typical file formats used for config files are JSON, YAML or
XML. Due to poor readability, XML has been ruled out from the
start. Unfortunately does JSON not support any comments inside the
file, which was decided to be an important feature. Therefore it was
decided to use YAML as the proper file format for Oxide config
files.

Technical implementation

The following sections describe the argument for the chosen parsing
library.

Parsing the config file

The config file needs to be parsed before we can accesses the stored
data. This should be as easy and effortless as possible. The preferred
solution for this is to have a parser that outputs a single struct which
contains all config values.

Library

The serde crate is the obvious choice for serialization and
deserialization in the rust eco-system. It is widely supported and has
subcrates such as serde_yaml for specific file formats.

Additionally features such as giving fiels default values when not part
of the config are possible.

#[serde(default='default_value')]

Using this it is possible to use default values for not present or
wrongly assigned variables.

Conclusion

After evaluating all aspects the team came to the conclusion to use YAML
as file format and the serde_yaml crate as parser.

Footnotes

D-Bus interprocess communication (IPC)

D-Bus interface description

OxideWM has a D-Bus interface for IPC communication. This is primarily used in the Oxide-IPC library.
This interface mainly gives access to the current state of Oxide. This state includes the loaded config, current windows, layouts, workspaces…
It also allows to execute oxide commands.

Interface

org.oxide.interface

D-Bus Method Calls

Returns the current OxideState as a JSON object:

get_state() -> String

Executes the given command:

sent_event(WmActionEvent) -> void

D-Bus Signal

Returns the current oxide state when change occurs to the subscribers:

state_change -> String

Footnotes

Testing Oxide

Running tests

Automated and integration tests can be run using the main makefile:

make test

Where to find test results

Automated test logs are exluded from version control to avoid cluttering.
Manual test results and findings can be found in:

test/results

Unittests

Unittests are not used in this project due to the significant amount of
human input required to complete them. Instead, integration and
automated tests are used to test and validate features.

Integration tests

Since the project requires some very restrictive setup, like a
connection to the X11 server, which can only be granted once at a time,
intergration tests are very limited as well, due to them running in
parallel. They are currently used to validate that the projects config
parser works correctly, which includes checking for wrong datatypes or
missing fields in the config file. Additionally, the creation- and
switching-process of workspaces is tested.

Automated tests

In this project, an automated tests is defined as a test that is
performed on the full build, but does not require any human input. This
is useful for testing much of the basic functionality that the project
should support after each new update while removing the significantly
higher test duration a human reviewer would require.

Unfortunately it is not possible to test everything using this method,
and issues found by this kind of tests have to be manually traced back
to their origin as well, as the only information the testing framework
has access to is a JSON-dump of the entire windowmanager.

Automated tests for this project work by using Xephyr in combination
with oxide-msg as well as a custom testing framwork tailored to make
writing new tests as simple as possible. The files relevant for
automated testing are located here:

test/resources

Functionality being tested automatically:

- opening windows (xterm and kitty, both are terminals)

- closing windows (xterm)

- moving focus between windows (xterm and kitty, 5 windows total)

- moving windows / switching window position (10 movements per layout)

- switching layout (vertical stripes, horizontal stripes, tiled layout)

- closing the windowmanager

Manual tests

Manual tests are used to cover all other areas ignored by the previous
testing methods.

Manually tested features are:

- installation of the windowmanager

- running the fully installed version of the project as a real windowmanager

- keyboard inputs

- mouse inputs

- autostarting applications

- interaction with dmenu

In addition, this type of test is used to narrow down issues after they
are discovered by automated tests.

Footnotes

Diagrams

	Components and behavior diagrams
	Components

	Change request

	New application

	New application user perspective

	Switch workspace user perspective

	Switch workspace user perspective

	HMI behavior
	Horizontal layout

	Vertical layout

	Tiled layout

	Workspaces in statusbar

	Flowcharts
	Main event loop

	Instantiation

	Eventhandling

	Communication window manager and statusbar

	Register keybinds

	Getting associated keybind when key pressed

	Class diagrams
	extensions

	windowmanager

Footnotes

Components and behavior diagrams

The individual components and their behavior in certain situations are shown below.

Hint

If the diagrams are not shown big enough to read, please click on them.

Components

[image: ../../_images/components.png]

components

Change request

[image: ../../_images/behaviour_change_request.png]

behaviour while incoming change request

New application

[image: ../../_images/behaviour_new_application.png]

behaviour when new application is demanded

New application user perspective

[image: ../../_images/behaviour_application_preparation.png]

behaviour when new application is demanded from the user perspective

Switch workspace user perspective

[image: ../../_images/behaviour_switch_workspace.png]

behaviour when a new workspace is selected from the user perspective

Switch workspace user perspective

[image: ../../_images/behaviour_config_change.png]

behaviour what happens during a config change from the user perspective

Footnotes

HMI behavior

The individual components and their behavior in certain situations are shown below.

Hint

If the diagrams are not shown big enough to read, please click on them.

Horizontal layout

[image: ../../_images/layout_horizontal.png]

horizontal layout

Vertical layout

[image: ../../_images/layout_vertical.png]

vertical layout

Tiled layout

[image: ../../_images/layout_tiled.png]

tiled layout

Workspaces in statusbar

[image: ../../_images/mock_statusbar.png]

workspace 3 is active

Footnotes

Flowcharts

The following flowcharts show the technical structure and sequence of the product.

Hint

If the diagrams are not shown big enough to read, please click on them.

Main event loop

[image: ../_images/maineventloop.png]

main event loop

Instantiation

[image: ../_images/flowchart_instantiation.png]

instantiation

Eventhandling

[image: ../_images/flowchart_eventhandling.png]

eventhandling

Communication window manager and statusbar

[image: ../_images/flowchart_ipc_com_statusbar.png]

window manager and statusbar communicating

Register keybinds

[image: ../_images/flowchart_register_keybinds.png]

register keybinds

Getting associated keybind when key pressed

[image: ../_images/flowchart_keybinding_pressed.png]

associated keybind for pressed key

Footnotes

Class diagrams

All shown class diagrams are automatically generated.

	extensions
	oxide-bar
	config

	main

	xcb visualtype

	oxide-ipc
	ipc

	lib

	oxide-msg
	main

	windowmanager
	config
	commands

	config

	eventhandler
	events

	eventhandler

	screeninfo
	error

	screeninfo

	setup
	connection

	windowmanager
	windowmanager

	workspace
	workspace

	parse error

	workspace layout

	workspace navigation

	auxiliary

	ipc

	keybindings

	main

	windowstate

Footnotes

extensions

All shown class diagrams are automatically generated.

	oxide-bar
	config

	main

	xcb visualtype

	oxide-ipc
	ipc

	lib

	oxide-msg
	main

Footnotes

oxide-bar

Hint

If the diagrams are not shown big enough to read, please click on them.

config

[image: ../../../_images/config.png]

config.png

main

[image: ../../../_images/main.png]

main.png

xcb visualtype

[image: ../../../_images/xcb_visualtype.png]

xcb_visualtype.png

Footnotes

oxide-ipc

Hint

If the diagrams are not shown big enough to read, please click on them.

ipc

[image: ../../../_images/ipc.png]

ipc.png

lib

[image: ../../../_images/lib.png]

lib.png

Footnotes

oxide-msg

Hint

If the diagrams are not shown big enough to read, please click on them.

main

[image: ../../../_images/main1.png]

main.png

Footnotes

windowmanager

All shown class diagrams are automatically generated.

	config
	commands

	config

	eventhandler
	events

	eventhandler

	screeninfo
	error

	screeninfo

	setup
	connection

	windowmanager
	windowmanager

	workspace
	workspace

	parse error

	workspace layout

	workspace navigation

Hint

If the diagrams are not shown big enough to read, please click on them.

auxiliary

[image: ../../_images/auxiliary.png]

auxiliary.png

ipc

[image: ../../_images/ipc1.png]

ipc.png

keybindings

[image: ../../_images/keybindings.png]

keybindings.png

main

[image: ../../_images/main2.png]

main.png

windowstate

[image: ../../_images/windowstate.png]

windowstate.png

Footnotes

config

Hint

If the diagrams are not shown big enough to read, please click on them.

commands

[image: ../../../_images/commands.png]

commands.png

config

[image: ../../../_images/mod.png]

mod.png

Footnotes

eventhandler

Hint

If the diagrams are not shown big enough to read, please click on them.

events

[image: ../../../_images/events.png]

events.png

eventhandler

[image: ../../../_images/mod1.png]

mod.png

Footnotes

screeninfo

Hint

If the diagrams are not shown big enough to read, please click on them.

error

[image: ../../../_images/error.png]

error.png

screeninfo

[image: ../../../_images/mod2.png]

mod.png

Footnotes

setup

Hint

If the diagrams are not shown big enough to read, please click on them.

connection

[image: ../../../_images/connection.png]

connection.png

Footnotes

windowmanager

Hint

If the diagrams are not shown big enough to read, please click on them.

windowmanager

[image: ../../../_images/mod3.png]

mod.png

Footnotes

workspace

Hint

If the diagrams are not shown big enough to read, please click on them.

workspace

[image: ../../../_images/mod4.png]

mod.png

parse error

[image: ../../../_images/parse_error.png]

parse_error.png

workspace layout

[image: ../../../_images/workspace_layout.png]

workspace_layout.png

workspace navigation

[image: ../../../_images/workspace_navigation.png]

workspace_navigation.png

Footnotes

Using Oxide

	Installation

	Configuration

	Configuration of statusbar

	Configuration of Oxide msg

Footnotes

Installation

Prerequisits

Rust needs to be installed. After it has been installed, restart the terminal session, so that any new environment variables are loaded.

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Build tools need to be install:

sudo apt install git make build-essential libglib2.0-dev libcairo2-dev libpango1.0-dev kitty xterm

Installation

	Clone the Oxide git repository:

git clone https://github.com/DHBW-FN/OxideWM.git

	Install Oxide via make:

cd OxideWM
make install

Sudo privileges are required to install Oxide.

After installation you can quit your current X session and log out. Subsequently Oxide should be selectable as window manager in your login screen.

Footnotes

Configuration

Description

Define the behavior of Oxide.
The config file provides the possibility to customize e. g. keybindings, layout, style.
If the home config file is not existing, default values will be used but commands like exec and exec_always will not be working.
The config file is written in YAML.

Files

During launch, Oxide searches for a config file in the following locations:

Home config file:

~/.config/Oxide/config.yml

System config file:

/etc/Oxide/config.yml

Keybindings

Keys

A keybinding has to consist of at least one or more MODIFIERS and exactly one normal key such as ‘t’ for example.

Modifier

M

Meta key

A

ALT key

C

CONTROL key

S

SHIFT key

Commands

Commands consist of a command and optional arguments.

Commands (COMMAND)

Move [MOVEMENT]

move window

Focus [MOVEMENT]

move focus

Quit

quit the window manager

Kill

kill the currently focused window

Restart

reloads the config and restarts components

Layout [LAYOUT]

change the current layout

GoToWorkspace [WORKSPACE_ARGS]

change the current workspace

MoveToWorkspace [WORKSPACE_ARGS]

move the used window to a different workspace

MoveToWorkspaceAndFollow [WORKSPACE_ARGS]

move the focused window to and select a different workspace

Exec COMMAND

execute a given command

Fullscreen

toggle fullscreen mode for the focused window

Arguments (ARGS)

Command arguments are necessary for the movement, the layout or to control workspaces.

Movement (MOVEMENT)

Left

moves to the left

Right

moves to the right

Layout (LAYOUT)

VerticalStriped

windows vertically next to each other

HorizontalStriped

windows horizontally underneath each other

None

if no argument is provided, the next layout is chosen

Workspace arguments (WORKSPACE_ARGS)

Next

Next initialized workspace with a higher index than the current workspace. If the workspace with the highest index is selected, the index with the lowest index will be selected.

Previous

Next initialized workspace with a lower index than the current workspace. If the workspace with the lowest index is selected, the index with the highest index will be selected.

Next_free

Next available workspace with which is not initialized. Gaps in the workspace indices are filled first.

Index

workspace with the given index

Iterations

The iteration commands provide the possibility to change between workspaces when given an iteration number as shown in the example down below.

iter

iterates over given number in order to change

Default keybindings

Here is a short overview of the default keybindings.

Meta+Shift+e

quits the window manager

Meta+Shift+r

restarts the window manager

Meta+Shift+q

kills the current window

h/l

direction keys (left/right)

Meta+[DIRECTION]

changes the focus to the direction window

Meta+Shift+[DIRECTION]

moves the window to the direction

Meta+f

changes the current window to fullscreen

Meta+u

switches to the next layout

Meta+i

changes the layout to vertical

Meta+Shift+i

changes to layout to horizontal

Right/Left

workspace navigation keys (next/previous)

Meta+[WORKSPACE_DIRECTION]

changes to the workspace direction

Meta+n

opens a new workspace

Control+Meta+[WORKSPACE_DIRECTION]

moves a window to the workspace direction

Control+Meta+n

opens a new workspace and moves the window to it

Meta+Shift+[WORKSPACE_DIRECTION]

moves the window to the workspace direction and follows it

Meta+Shift+n

creates a new workspace, moves the window to it and follows

Control+Meta+Down

quits the workspace

Meta+t

opens dmenu

1/2/3/4/5/6/7/8/9

workspace numbers

Meta+[WORKSPACE_NUMBER]

switches to workspace number

Control+Meta+[WORKSPACE_NUMBER]

moves window to workspace number

Meta+Shift+[WORKSPACE_NUMBER]

moves window to workspace number and follows it

Borders

border_width

sets the border width of windows in pixels

border_color

sets the border color and has to be entered in hexadecimal

border_focus_color

sets the border color for focused windows and has to be entered in hexadecimal

gap

gap between windows in pixels

Execute

exec

one time execution when the window manager starts

exec_always

is executed during start of the window manager and also at each restart

Examples

Keybindings

cmds:
 - keys: ["M", "t"]
 commands:
 - command: Exec
 args: "dmenu"

In this example pressing the meta key and ‘t’, a new dmenu window is opened.

Iterations

iter_cmds:
 - iter: [1, 2, 3, 4, 5, 6, 7, 8, 9]
 command:
 keys: ["M", "C", "$VAR"]
 commands:
 - command: GoToWorkspace
 args: "$VAR"

In this example using the ALT and CONTROL key paired with a number from one to nine, the user can go to the desired workspace.
$VAR is a reference for the entered iterator.

Bugs

Please open an issue https://github.com/DHBW-FN/OxideWM/issues .

Footnotes

Configuration of statusbar

Description

Define the behavior of the statusbar for Oxide. The config file provides the possibility to customize the text and background color of the Oxide statusbar.
The config file is written in YAML.

Files

During launch, Oxide bar searches for a statusbar config file in the following two locations.

Home config file:

~/.config/Oxide/bar_config.yml

System config file:

/etc/Oxide/bar_config.yml

Color

In order to configure the colors, they have to be entered in hexadecimal. If the colors are not defined, default values will be used.

Examples

color_bg: "0x008000" # green
color_txt: "0xFFFF00" # black

Bugs

Please open an issue https://github.com/DHBW-FN/OxideWM/issues .

Footnotes

Configuration of Oxide msg

Synopsis

oxide-msg [-h] | [-v] | [-c command] [-a argument]

Description

The oxide-msg is an IPC command tool allowing querying and messaging to Oxide via the commandline.

Options

-a, –argument [ARGUMENT]

arguments to specify command behavior

-c, –command [WM_COMMAND]

window manager commands

-h, –help

output help message and exit

-v, –version

output version information and exit

WM commands (WM_COMMAND)

Move -a [MOVEMENT]

move window

Focus -a [MOVEMENT]

move focus

Quit

quit the window manager

Kill

kill the currently focused window

Restart

reloads the config and restarts components

Layout -a [LAYOUT]

change the current layout

GoToWorkspace -a [WORKSPACE_ARGS]

change the current workspace

MoveToWorkspace -a [WORKSPACE_ARGS]

move the focused window to a different workspace

MoveToWorkspaceAndFollow -a [WORKSPACE_ARGS]

move the focused window to and select a different workspace

Exec -a [COMMAND]

execute a given command

Fullscreen

toggle fullscreen mode for the focused window

Movement (MOVEMENT)

Left

moves to the left

Right

moves to the right

Layout (LAYOUT)

Vertical

windows vertically next to each other

Horizontal

windows horizontally underneath each other

None

if no argument is provided, the next layout is chosen

Workspace arguments (WORKSPACE_ARGS)

Next

Next initialized workspace with a higher index than the current workspace. If the workspace with the highest index is selected, the index with the lowest index will be selected.

Previous

Next initialized workspace with a lower index than the current workspace. If the workspace with the lowest index is selected, the index with the highest index will be selected.

Next_free

Next available workspace with which is not initialized. Gaps in the workspace indices are filled first.

Index

workspace with the given index

Examples

cargo run -p oxide-msg -- -c "exec" -a "kitty"
cargo run -p oxide-msg -- --command "kill"

Bugs

Please open an issue https://github.com/DHBW-FN/OxideWM/issues .

Footnotes

Index

 _images/flowchart_ipc_com_statusbar.png
Oxide

Statusbar

draw state

receive signal

receive response

Window Manager

receive request

Window Manager

State

dbus-signal

await ’
statechange fetch state }—P{ return state

_l

N
H
Window Manager

_images/flowchart_keybinding_pressed.png
Oxide

keycode
code

keycode 25

keycode
mapping

keycode 25 = cmd1
keycode 26 = cmd2
keycode 27 = cmd3

x-server

_images/flowchart_eventhandling.png
interupted.

interupted.

wait for
IPC-event

received X-event

convertto
Oxide-event

send Oxide-event

in Queue

>

received IPC-event

convertto
Oxide-event

send Oxide-event

in Queue

accept Oride-event

from queue

fetreive handler
for event

execute
handier

_images/flowchart_instantiation.png
test environment launched by OS.

start of test environment

runxsh

main.s

windowmanager.rs

screeninfors

Greating once’
‘per monitor

#screeninfostruct

‘workspace for
displaying windows.

configrs.

foading configs
and defaults

v
keybindings.rs

sinfnityloop

_images/ipc1.png
‘WmInterface

event_send_channel: Arc<Mutex<Sender<EventType>>>
status_receive_channel: Arc<Mutex<Receiver<String>>>

get_status(&mut self) -> String
sent_event(&mut self, event: WmActionEvent)
state_change(sig_cnt: &SignalContext<'_>, state: String) -> zbus::Result<()>

signal_state_change

_images/ipc_queue.png

_images/flowchart_register_keybinds.png
xmodmap

Oxide

get mapping

keycode
mapping

keycode 25=w
keycode 2
keycode 27 =1

keycode
mapping
keycode 25 = cmd1

keycode 26 = cmd2
keycode 27 = cmd3

register

keycodes.

xserver

_images/ipc.png
Interface
‘WmInterface

state_signal_channel_async

get_state_async

get_proxy

sent_event_async

_images/keybindings.png
KeyCode

KeyEvent

pub keycods: KeyCode keycodes_map
pub args: Option<String>
pub event: WmCommands -

’

KeyBindings

pub mask: ul6
pub code: u8

pub events_map: HashMap<u8, Vec<KeyEvent>>
pub events_vec: Vec<KeyEvent>

new(config: &Config) -> KeyBindings

retreive_cmd(&self, event: &KeyPressEvent) -> Option<KeyEvent>

\

\
\
\
\

keyname_to_keycode

_images/layout_horizontal.png
17:45

horizontal layout

_images/main.png
get_time_fomat

OxideBar

conn: Arc<XCBConnection>
window: Window
atoms: AtomCollection
screen: u32
visual_id: u32
config: Config
depth: u8
cairo_surface: Option<cairo:XCBSurface>
composite_mgr: bool
state: OxideStateDto

new(conn: Arc<XCBConnection>, config: Config, screen_num: usize) -> OxideBar
composite_manager_running(&mut self, screen_num: usize)
create_window(&mut self, screen_num: usize) -> Result<(), ReplyOrIdError>
create_cairo_surface(&mut self)
draw(&mut self)
handle_oxide_state_event(&mut self, state: OxideStateDto)

handle x_event(&mut self, event: x11rb::protocol::Event)

,
thread_x11rb_events

|
|
|
|
|
|
\
|
|
|
|
|
|

\
\
thread_state thread_timer

_images/main1.png
Args

command: String
args: Option<String>

nav.xhtml

 Table of Contents

 		
 Oxide documentation

 		
 Introducing Oxide

 		
 Introduction

 		
 Terminology

 		
 Target group

 		
 Product functions

 		
 Config file

 		
 Logging

 		
 Files

 		
 Bugs

 		
 Project procedure

 		
 Customer specification (Lastenheft)

 		
 Product goal

 		
 Target group

 		
 Product functions

 		
 Technical specification (Pflichtenheft)

 		
 Product functions

 		
 Project handbook

 		
 General project schedule

 		
 Branching

 		
 Testing

 		
 Logging

 		
 Scrum

 		
 Work package plan

 		
 Technologies

 		
 Critical technologies

 		
 D-Bus interprocess communication (IPC)

 		
 Testing Oxide

 		
 Running tests

 		
 Where to find test results

 		
 Unittests

 		
 Integration tests

 		
 Automated tests

 		
 Manual tests

 		
 Diagrams

 		
 Components and behavior diagrams

 		
 Components

 		
 Change request

 		
 New application

 		
 New application user perspective

 		
 Switch workspace user perspective

 		
 Switch workspace user perspective

 		
 HMI behavior

 		
 Horizontal layout

 		
 Vertical layout

 		
 Tiled layout

 		
 Workspaces in statusbar

 		
 Flowcharts

 		
 Main event loop

 		
 Instantiation

 		
 Eventhandling

 		
 Communication window manager and statusbar

 		
 Register keybinds

 		
 Getting associated keybind when key pressed

 		
 Class diagrams

 		
 extensions

 		
 windowmanager

 		
 Using Oxide

 		
 Installation

 		
 Prerequisits

 		
 Installation

 		
 Configuration

 		
 Description

 		
 Files

 		
 Keybindings

 		
 Commands

 		
 Iterations

 		
 Default keybindings

 		
 Borders

 		
 Execute

 		
 Examples

 		
 Bugs

 		
 Configuration of statusbar

 		
 Description

 		
 Files

 		
 Color

 		
 Examples

 		
 Bugs

 		
 Configuration of Oxide msg

 		
 Synopsis

 		
 Description

 		
 Options

 		
 WM commands (WM_COMMAND)

 		
 Movement (MOVEMENT)

 		
 Layout (LAYOUT)

 		
 Workspace arguments (WORKSPACE_ARGS)

 		
 Examples

 		
 Bugs

_images/layout_vertical.png
vertical

layout

_images/lib.png
get_state_struct switch_workspace state_signal_channel
i s ' e
get_state

_images/mock_statusbar.png
statusbar on workspace 3

_images/mod.png
default_cmds default_icmds default_exec_always default_border_width default_border_color default_border_focus_color default_gap default_default_layout
\\~;\~‘ ‘\~\\‘ ‘\\\ ~. T - ’//,’ //,4" __7/,_—"
b N REY Y yad - - -

- - Config le-- - -
R ~ Al #[serde(default = "default_cmds")] pub cmds: Vec<WmCommand> - P
~ =~ 4] #[serde(default = "default_icmds")] pub iter_cmds: Vec<IterCmd> le--" -7
#[serde(default = "default_exec")] pub exec Vec<String> ----
#[serde(default = "default_exec_always")] pub exec_always: Vec<String>
#[serde(default = "default_border_width")] pub border_width: u32
#[serde(default = "default_border_color")] pub border color: String
#[serde(default = "default_border_focus_color")] pub border focus_color: String
#[serde(default = "default_gap")] pub gap: u32
#[serde(default = "default_default_layout")] pub default_layout: WorkspaceLayout

new(source_file: Option<&str>) -> Config
to_dto(&self) -> ConfigDto

cmd

parse_iter_cmds(&mut self)

_images/main2.png
get_status_channel get_event_channel start_zbus_thread start x_event_thread

_images/maineventloop.png
it
register
substructure-redirect
v
grab modifier keys
#heading

initalize shared
channel

_images/mod1.png
EventHandler

pub window_manager: &'‘a mut WindowManager
keybindings: &'a KeyBindings
new(window_manager: &'a mut WindowManager, keybindings: &'a KeyBindings,) -> EventHandler<'a>

run_event_loop(&mut self, receive_channel: Arc<Mutex<Receiver<EventType>>>, status_send_channel: Arc<Mutex<Sender<String>>>,)
handle x_event(&mut self, event: &Event)

handle_keypress(&mut self, event: &KeyPressEvent)
handle_ipc_event(&mut self, event: IpcEvent, status_send_channel: Arc<Mutex<Sender<String>>>,)
handle_wm_command(&mut self, command: WmActionEvent)

_images/layout_tiled.png

_images/parse_error.png
ParseError

details: String

new(details: String) -> ParseError

_images/windowstate.png
WindowState

#[serde(skip_serializing)] pub connection: Arc<RustConnection>
#[serde(skip_serializing)] pub config: Re<RefCell<Config>>
pub frame: Window
pub window: Window
pub title: String
pub visible: bool
pub urgent: bool
pub x: 132
pub y: 132
pub width: u32
pub height: u32
pub border_width: u32
pub gap_size: u32

new(connection: Arc<RustConnection>, root_screen: Rc<RefCell<Screen>>, config: Re<RefCell<Config>>, window: Window,) -> WindowState
to_dto(&self) -> WindowStateDto
set_bounds(&mut self, x: 132, y: 132, width: u32, height: u32) -> &mut WindowState
draw_frameless(&self)
draw(&self)

_images/mod4.png
‘Workspace

#[serde(skip_serializing)] pub connection: Arc<RustConnection>
pub name: ul6
#[serde(skip_serializing)] pub root_screen: Re<RefCell<Screen>>
#[serde(skip_serializing)] pub screen_size: Re<RefCell<ScreenSize>>
#[serde(skip_serializing)] pub config: Re<RefCel<Config>>
pub focused_window: Option<u32>
pub fullscreen: Option<u32>
pub urgent: bool
pub windows: HashMap<u32, WindowState>
pub order: Vec<u32>
pub layout: WorkspaceLayout

new(name: u16, connection: Arc<RustConnection>, root_screen: Rc<RefCell<Screen>>, screen_size: Re<RefCell<ScreenSize>>, config: Rc<RefCell<Config>>,) -> Workspace
to_dto(&self) -> WorkspaceDto

(key, state)

get_focused_window(&self) -> Option<u32>
move_focus(&mut self, mov: Movement)

&x

move_window(&mut self, mov: Movement) -> Option<u32>

&x

rename(&mut self, name: u16)
add_window(&mut self, win: WindowState)
toggle_fullscreen(&mut self)
kill_all_windows(&mut self)

window

is_softkill_supported(&self, winid: u32) -> bool

a

Kkill_window(&mut self, winid: &u32)
execute_softkill(&mut self, winid: u32)
remove_window(&mut self, win_id: &u32)

&x

new_window(&mut self, window: Window)

show()

hide()

focus_window(&mut self, winid: u32)

unfocus_window(&mut self)

set_layout(&mut self, layout: WorkspaceLayout)

next_layout(&mut self)

unmap_windows(&mut self)

remap_windows(&mut self)

map_vertical_striped(&mut self)

map_horizontal_striped(&mut self)
map_tiled(&mut self)

_images/oxide-rice.png
> neofetch

. -/400555500+/ - .
T 1 4SSSS5SSSSSSSSSSSSS+:
-+55555555555555S5S5YYSSSS+-
.055555555555555555SAMMMNysssso
Jeccssoos s o hdmmNNmmyNMMMMh < < <<
ococoooochm o MMMMMMMNddddy - oo
Jcooooo hNMMM.hyyyyhmNMMMNR - <o
oo dMMMNR- oSS RNMMMA- oo
- hhhyNMMNy <o CyNMMMy <o
- yNMMMNyMMh- <o hmmmhe oo
0 SYNMMMNYMMR < < <o coccoesssimmnssssssso
o~ hhhyNMMNy oo yNMMMy <o
Coccccoo dMMMNR- oo RNMMMAS s
Jccscoo hNMMM.hyyyyhdNMMMNR - << oo
Gosssssssodmy MMMMMMMMddddy <o
©ooooo hdmNNNNmyNMMMMA o
.055555555555555555SAMMMNysssso
- +55555555555555SSSYYYSSSS+-
N1 4SSSSSSSSSSSSSSSSSS+:
.-/+00555500+/ - .

felschol@DEV-NB-10022
05: Ubuntu 22.04.2 LTS x86 64
Host: HP EliteBook 840 G5

Kernel: 5.15.0-58-generic

Uptine: 9 days, 20 hours, 59 mins
Packages: 2538 (dpkg), 20 (snap
Shell: bash 5.1.16

Resolution: 1920x1080

DE: oxide

Thene: Adwaita-dark [6TK2/3

Tcons: Yaru-blue [6TK2/3]
Terminal: kitty

CPU: Intel 17-8556U (8) @ 4.000GHz
GPU: Intel UHD Graphics 620
HMemory: 1670MiB / 15849MiB

33s | 09:14:04

62

EE]
32
31
EL]
29
28
27
26
25
24
23
22
21
20

19
18
17
16
15
14
13
12
11

NWaUON®©O D

status_receive channel: Arc<Mutex<Receiver<String>>>,
}
#[dbus_interface(name = "org.oxide.interface")]
impl WnInterface {
fn get_status(&mut self) -> String {
let event = EventType::OxideEvent(IpcEvent {
status: true,
event: None,
Hi
//flushing channel
while let Ok(_) = self.status receive channel.lock().unwrap().try recv() {
open an issue on github");
}
//send state request to wm manager via channel
self.event send channel.lock().unwrap().send(event).unwrap();
//block om receiving channel until state has been sent by the wm
self.status_receive channel.lock().unwrap().recv().unwrap(
}
fn sent event(&mut self, event: WmActionEvent) {
let event = EventType::OxideEvent(IpcEvent {
status: false,
event: Some(event),
Hi
//sent event to wm manager via channel
self.event_send channel.lock().unwrap().send(event).unwrap();
}
#[dbus_interface(signal)]
async fn state change(sig cnt: &SignalContext<' >, state: String) -> zbus::Result<()
>
)3
i
pub async fn zbus_serve(
event_send_channel: Arc<Mutex<Sender<EventType>>>,
status_receive channel: Arc<Mutex<Receiver<String>>>,
) -> Result<(), Box<dyn Error>> {
let event send clone = event send channel.clone();
let status_receive clone = status_receive channel.clone();
let interface = WmInterface {
event_send_channel: event send clone
status_receive channel: status receive clone
}i
let path = "/org/oxide/interface";
let zbus_connection = ConnectionBuilder::session()?
.name("org.oxide.interface")?

warn!("There occured a flush of an old state: If this happens often, please

NORMAL JST:TeNI3

rust ®

utf-8 @

»

_images/workspace_navigation.png
WorkspaceNavigation

parse_workspace_navigation(args_option: Option<String>,) -> Result<WorkspaceNavigation, ParseError>
is_create_if not_exists(&self) -> bool

_images/xcb_visualtype.png
xcb_visualtype_t

pub visual_id: u32
pub class: u8
pub bits_per_rgb_value: u8
pub colormap_entries: ul6
pub red_mask: u32
pub green_mask: u32
pub blue_mask: u32

pub pad0: [u8; 4]

find_xcb_visualtype

_images/workpackageplan.png
Projects and Epics

@ Testing
Jan17-viarz

@ Planning
025 - Nov 14, 2022

@ Concepts

Nov1-Nov 20, 2022

@ Project setup
oct25-Nov, 2022

@ Fundamental Features
Nov20,2022 - Jan 1, 2023

@ Basic Features
Jan1-Fen

@ Optional Features
Fob - Fab20

@ Feature freeze | Bug fxing
Feb21-war2

[e———
Feb21-war2

2

a1

November
7

14

21

2

December

12

4 .

19

4 s».

2

4 5.

January 2023
2 o

4 5.

4 .

16

February

March
13 20

freeze | Bug fixing -5//

-m.. Planning -4/

2

_images/workspace_layout.png
WorkspaceLayout

to_string(&self) > String

_images/auxiliary.png
exec_user_command atom_name get_internal atom

_images/behaviour_application_preparation.png
open in
current workspace

move to another
workspace &
follow

need to use immediatly

open menu select application

wait for

£g app to be 82
33 Visible S8
2 T
g2 23
&2 TE

H]
g g€
2E

H o

g 2

move to another work on current switch to the
workspace workspace other workspace

switch to empty.

workspace open menu iselect application|

wait for
app to be
Visible

work with
application

quit application

_images/mod2.png
ScreenSize

pub width: u32
pub height: u32
pub ws_pos_x: i32
pub ws_pos_y: i32
pub ws_width: u32
pub ws_height: u32

default(width: u32, height: u32) -> ScreenSize

J

ScreenInfo

connection: Arc<RustConnection>
screen_ref: Re<RefCell<Screen>>
workspaces: HashMap<ul6, Rc<RefCell<Workspace>>>
pub active_workspace: Rc<RefCell<Workspace>>
config: Re<RefCell<Config>>
pub screen_size: Rc<RefCell<ScreenSize>>
pub status_bar: Option<WindowState>

new(connection: Arc<RustConnection>, screen_ref: Re<RefCell<Screen>>, config: Re<RefCell<Config>>, width: u32, height: u32,) -> ScreenInfo
to_dto(&self) -> ScreenInfoDto

(key, workspace)

get_active_workspace(&self) -> Rc<RefCell<Workspace>>

create_status_bar window(&mut self, event: &CreateNotifyEvent)

add_status_bar(&mut self, event: &CreateNotifyEvent)

create_workspace(&mut self, workspace_nr: ul6) -> Rc<RefCell<Workspace>>

is_window_on_active_workspace_selected(&mut self) -> bool

on_map_request(&mut self, event: &MapRequestEvent)

quit_workspace_select_new(&mut self) -> Result<(), QuitError>

quit_workspace(&mut self, workspace name: ul6) -> Result<(), QuitError>

move_window_to_workspace_and_follow(&mut self, arg: WorkspaceNavigation,) -> Result<(), MoveError>

move_window_to_workspace(&mut self, arg: WorkspaceNavigation) -> Result<(), MoveError>

get_next_workspace_nr(&self, arg: WorkspaceNavigation) -> Result<ul6, MoveError>

move_window_to_workspace nr(&mut self, new_workspace_nr: ul6) -> Result<(), MoveError>

go_to_workspace(&mut self, arg: WorkspaceNavigation) -> Result<(), MoveError>
find_next_free_workspace(&self) -> ul6

ws

find_next_workspace(&self) > ul6
find_previous_workspace(&self) -> u16
find_highest_workspace(&self) -> Option<ul6>

(workspace_nr,)

find_lowest_workspace(&self) -> Option<ul6>

(workspace_nr,)

find_next_highest_workspace_nr(&self) -> Option<ul6>

(workspace_nr,)

workspace_nr

find_next_lowest_workspace_nr(&self) -> Option<ul6>

(workspace_nr,)

workspace_nr

set_workspace(&mut self, workspace_nr: ul6) -> Result<(), ()>
get_workspace_count(&self) -> usize
set_test_workspaces(&mut self, workspaces: Vec<u16>)
set_test_active_workspace(&mut self, workspace: ul6)

_images/mod3.png
WindowManager

pub connection: Arc<RustConnection>
pub screeninfo: HashMap<u32, ScreenInfo>
pub config: Re<RefCell<Config>>
pub focused_screen: u32
pub moved_window: Option<u32>
pub restart: bool

new(connection: Arc<RustConnection>, config: Re<RefCell<Config>>) -> WindowManager
restart_wm(&mut self, config: Re<RefCell<Config>>)
autostart_exec(&self)
autostart_exec_always(&self)
get_state(&self) -> OxideStateDto

(key, info)

run_event_proxy(connection: Arc<RustConnection>, queue: Arc<Mutex<Sender<EventType>>>)

get_active_workspace(&mut self) -> Rc<RefCell<Workspace>>

get_focused_window(&mut self) -> Option<u32>

handle_keypress_focus(&mut self, args_option: Option<String>)

handle_keypress_move(&mut self, args_option: Option<String>)

handle_keypress_kill(&mut self)

handle_keypress_layout(&mut self, args: Option<String>)

handle_keypress_go_to_workspace(&mut self, args_option: Option<String>)

handle_move_to_workspace(&mut self, args_option: Option<String>)

handle_move_to_workspace_follow(&mut self, args_option: Option<String>)

handle_quit workspace(&mut self)

handle_keypress_fullscreen(&mut self)

setup_screens(&mut self)

handle_event_enter notify(&mut self, event: &EnterNotifyEvent)

handle_event_leave notify(&mut self, _event: &LeaveNotifyEvent)

handle_event_destroy_notify(&mut self, event: &DestroyNotifyEvent)
atom_window_type_dock(&self, winid: u32) -> bool

a

handle_create_notify(&mut self, event: &CreateNotifyEvent)
handle_map_request(&mut self, event: &MapRequestEvent)

_images/behaviour_config_change.png
user reloads
config from
windowmanager

user changes
config

user can use
new keybinding

user wants to
change a keybinding

_images/behaviour_new_application.png
starts

application is rendered

notification)

configure window

map request

configure window

=
]

_static/minus.png

_images/behaviour_change_request.png
change by user

keybinding pressed |

key event

configure window

notify

app at new location

_static/plus.png

_images/components.png
_external components

User

]

Display

_images/config.png
Config

pub width: ul6
pub height: u16
#[serde(default = "default_color_bg")] pub color_bg: String
#[serde(default = "default_color txt")] pub color txt: String default_color_bg default_color_txt
pub module left: Vec<BarWidgets>

pub module. right: Vec<BarWidgets>

new(width: ul6) -> Config

_images/behaviour_switch_workspace.png
switch to
another
workspace

at least one app on
past workspace

no application
on past workspace

past workspace
present workspace

past workspace =
present workspace

close past
workspace
automatically

_images/commands.png
IterCmd

pub iter: Vec<String>
pub command: WmCommand

‘WmCommand

pub keys: Vec<String>
pub commands: Vec<WmCommandArgument>

to_dto(&self) > KeybindingDto

arg

WmCommandArgument

pub command: WmCommands
#[serde(default, deserialize_with = "deserialize_optional_string")] pub args: Option<String>

to_dto(&self) > WmCommandArgumentDto

_images/events.png
IpcEvent

pub status: bool
pub event: Option<WmActionEvent>

_images/connection.png
ungrab_keys
grab_keys update_root_window_event_masks

_images/error.png
MoveError QuitError

reason: String reason: String

new(reason: String) -> MoveError | | new(reason: String) > QuitError

_static/file.png

